Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(14): 17347-17360, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38561903

RESUMO

Three-dimensional (3D) cell assemblies, such as multicellular spheroids, can be powerful biological tools to closely mimic the complexity of cell-cell and cell-matrix interactions in a native-like microenvironment. However, potential applications of large spheroids are limited by the insufficient diffusion of oxygen and nutrients through the spheroids and, thus, result in the formation of a necrotic core. To overcome this drawback, we present a new strategy based on nanoparticle-coated microparticles. In this study, microparticles function as synthetic centers to regulate the diffusion of small molecules, such as oxygen and nutrients, within human mesenchymal stem cell (hMSC) spheroids. The nanoparticle coating on the microparticle surface acts as a nutrient reservoir to release glucose locally within the spheroids. We first coated the surface of the poly(lactic-co-glycolic acid) (PLGA) microparticles with mesoporous silica nanoparticles (MSNs) based on electrostatic interactions and then formed cell-nanofunctionalized microparticle spheroids. Next, we investigated the stability of the MSN coating on the microparticles' surface during 14 days of incubation in cell culture medium at 37 °C. Then, we evaluated the influence of MSN-coated PLGA microparticles on spheroid aggregation and cell viability. Our results showed the formation of homogeneous spheroids with good cell viability. As a proof of concept, fluorescently labeled glucose (2-NBD glucose) was loaded into the MSNs at different concentrations, and the release behavior was monitored. For cell culture studies, glucose was loaded into the MSNs coated onto the PLGA microparticles to sustain local nutrient release within the hMSC spheroids. In vitro results demonstrated that the local delivery of glucose from MSNs enhanced the cell viability in spheroids during a short-term hypoxic culture. Taken together, the newly developed nanofunctionalized microparticle-based delivery system may offer a versatile platform for local delivery of small molecules within 3D cellular assemblies and, thus, improve cell viability in spheroids.


Assuntos
Dióxido de Silício , Esferoides Celulares , Humanos , Oxigênio
2.
Small ; 18(29): e2202112, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35754160

RESUMO

In biomaterials R&D, conventional monolayer cell culture on flat/planar material samples, such as films, is still commonly employed at early stages of the assessment of interactions of cells with candidate materials considered for a biomedical application. In this feasibility study, an approach for the assessment of 3D cell-material interactions through dispersed coaggregation of microparticles from biomaterials into tissue spheroids is presented. Biomaterial microparticles can be created comparatively quickly and easily, allow the miniaturization of the assessment platform, and enable an unhindered remodeling of the dynamic cell-biomaterial system at any time. The aggregation of the microsized biomaterials and the cells is supported by low-attachment round-bottom microwells from thin polymer films arranged in densely packed arrays. The study is conducted by the example of MG63 osteoblast-like and human mesenchymal stem/stromal cells, and a small library of model microbiomaterials related to bone repair and regeneration. For the proof of concept, example interactions including cell adhesion to the material, the hybrid spheroids' morphology, size, and shape, material-associated cell death, cell metabolic activity, cell proliferation, and (osteogenic) differentiation are investigated. The cells in the spheroids are shown to respond to differences in the microbiomaterials' properties, their amounts, and the duration of interaction with them.


Assuntos
Materiais Biocompatíveis , Células-Tronco Mesenquimais , Materiais Biocompatíveis/metabolismo , Técnicas de Cultura de Células/métodos , Humanos , Osteogênese/fisiologia , Esferoides Celulares , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...